skip to main content


Search for: All records

Creators/Authors contains: "Hoff, Chettar A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rhind, N (Ed.)
    Abstract UV irradiation induces pyrimidine dimers that block polymerases and disrupt the replisome. Restoring replication depends on the recF pathway proteins which process and maintain the replication fork DNA to allow the lesion to be repaired before replication resumes. Oxidative DNA lesions, such as those induced by hydrogen peroxide (H2O2), are often thought to require similar processing events, yet far less is known about how cells process oxidative damage during replication. Here we show that replication is not disrupted by H2O2-induced DNA damage in vivo. Following an initial inhibition, replication resumes in the absence of either lesion removal or RecF-processing. Restoring DNA synthesis depends on the presence of manganese in the medium, which we show is required for replication, but not repair to occur. The results demonstrate that replication is enzymatically inactivated, rather than physically disrupted by H2O2-induced DNA damage; indicate that inactivation is likely caused by oxidation of an iron-dependent replication or replication-associated protein that requires manganese to restore activity and synthesis; and address a long standing paradox as to why oxidative glycosylase mutants are defective in repair, yet not hypersensitive to H2O2. The oxygen-sensitive pausing may represent an adaptation that prevents replication from occurring under potentially lethal or mutagenic conditions. 
    more » « less
  2. ABSTRACT Divalent metals such as iron and manganese play an important role in the cellular response to oxidative challenges and are required as cofactors by many enzymes. However, how these metals affect replication after oxidative challenge is not known. Here, we show that replication in Escherichia coli is inhibited following a challenge with hydrogen peroxide and requires manganese for the rapid recovery of DNA synthesis. We show that the manganese-dependent recovery of DNA synthesis occurs independent of lesion repair, modestly improves cell survival, and is associated with elevated rates of mutagenesis. The Mn-dependent mutagenesis involves both replicative and translesion polymerases and requires prior disruption by H 2 O 2 to occur. Taking these findings together, we propose that replication in E. coli is likely to utilize an iron-dependent enzyme(s) that becomes oxidized and inactivated during oxidative challenges. The data suggest that manganese remetallates these or alternative enzymes to allow genomic DNA replication to resume, although with reduced fidelity. IMPORTANCE Iron and manganese play important roles in how cell’s cope with oxygen stress. However, how these metals affect the ability of cells to replicate after oxidative challenges is not known. Here, we show that replication in Escherichia coli is inhibited following a challenge with hydrogen peroxide and requires manganese for the rapid recovery of DNA synthesis. The manganese-dependent recovery of DNA synthesis occurs independently of lesion repair and modestly improves survival, but it also increases the mutation rate in cells. The results imply that replication in E. coli is likely to utilize an iron-dependent enzyme(s) that becomes oxidized and inactivated during oxidative challenges. We propose that manganese remetallates these or alternative enzymes to allow genomic DNA replication to resume, although with reduced fidelity. 
    more » « less